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Venus Express is a mission of the European Space Agency with the goal of studying
Venus atmosphere. The spacecraft has a thermal system that keeps certain instruments
within an operational temperature range. This system consumes some of the electrical
power available, but it’s hard to estimate how much. We propose a Data Mining and
Machine Learning model that significantly improves the accuracy of the current predictions
in the Mission Planning System. This should allow a safer planning of resource allocation
and eventually an increase in science return.

I. Introduction

I.A. Venus Express mission

Venus Express (VEX) is the first Venus exploration mission of the European Space Agency (ESA). It was
launched on November 9" 2005 by a Soyuz-Fregat from Baikonur, Kazakhstan. After a journey of about
five months it arrived to its final destination, where it keeps a 24-hour elliptical, quasi-polar orbit. At its
closest, Venus Express reaches an altitude of 250 kilometres and at its furthest, it is 66000 kilometres away
from the planet.

The spacecraft has been carrying global investigation of Venusian atmosphere in terms of its structure,
composition and dynamics. To achieve that, it uses a set of spectrometers, spectro-imagers and imagers,
covering a wavelength range from UV to thermal IR, along with a full plasma analyser.? VEX has a total
of seven scientific instruments.

The Venus Express Mission Operations Centre (VMOC) is located at the European Space Operations Centre
(ESOC) in Darmstadt, Germany. Communications with the spacecraft are mostly done using the ESA deep
space ground station located in Cebreros, near Madrid, Spain.!

I.B. Problem Overview

The spacecraft uses electrical power coming from the solar arrays (or batteries, during eclipses) not only
to supply the platform units, but also the thermal subsystem, which keeps the entire spacecraft within a
temperature range. The remaining available power can be used by the payloads to do science operations.

The amount of power that will be required by the platform units can easily be determined. However, the
power that the thermal subsystem will consume is dependent on the heaters, whose behavior depends both
on external (e.g. sun distance, solar aspect angle) and internal heat sources (e.g. units’ status, payloads’
status). Therefore the consumption can only be estimated. This is done during the planning phase in order
to reserve power for the thermal subsystem.

The goal of the project described in this paper was to forecast the power consumption profile of the
thermal subsystem for a given time period in the future. An accurate power usage estimation model at
planning level would reduce the current power margin allocated to the thermal subsystem, still complying
with the safety margins for avoiding undesired safe mode reconfiguration due to excessive bus power demand.
The gain in power will allow an increased level of science operations, and consequently of science return.
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I.C. VEX Thermal sub-system

The purporse of the thermal subsystem is to maintain all the componets of the spacecraft within their
respective operational temperatures. Venus Express uses both passive (e.g. paintings, insulation, etc.) and
active (heater lines) mechanisms to fulfil this objective.

A heater line is an electrical component made of a heater and a thermostat (see Figure 1).

Thermostat
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11.5W
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Figure 1: Example of heater line

Heaters are devices that can transform electrical power into heat. When they are active, they consume
a fixed and known amount of power.

Thermostats are devices that control the activation or deactivation of heaters based on the temperature
they measure. When the temperature at a thermostat goes below the minimum threshold, the associated
heater is switched ON, whereas if the temperature goes above the maximum, the heater is switched OFF.

Temperature

OFF ON OFF ON

Heater

Power
o
g
=
]

Figure 2: Thermostat behavior

The spacecraft has many heater lines powered by the Power Distribution Unit (PDU). This unit is
responsible for delivering the power to spacecraft’s units. Latching Current Limiters (LCL) are devices that
control units that might be switched off. They are ON/OFF switchable current limiters for non-essential
loads. Let’s call LCLH to a LCL that controls a set of heater lines (see Figure 3)
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Figure 3: Thermal subsytem

Every heater line behaves independently based solely on the actions triggered by its thermostat. When
the thermostat decides that its heater should be switched on, it closes the circuit and the heater demands
power to the PDU through its LCLH.
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I.D. Why is the problem hard?

Modeling the heater power consumption profile is hard because we are dealing with a complex, dynamic and
recurrent system.

Note that the temperatures sensed by the thermostats depend on many factors: intensity of Sun radiation,
Venus albedo effect, eclipses, spacecraft orientation, heat produced internally by the payloads, transmitters,
batteries, etc. The thermal subsystem itself, will affect temperatures that command its own behavior,
which creates a time-lagged feedback effect. Moreover, we don’t have reliable predictions for some of these
components (such as Venus albedo effect, or battery usage), which forbids us of including them as inputs to
the model.

On top of that, analyzing telemetry data means that we have to deal with time series with millions of
points, some data gaps, noise and different sampling periods.

I.LE. Current Model

The current model in the Mission Planning System is a function with a single input attribute: the pointing
type. The pointing type can be seen as an high level description of the operational state and orientation of
the spacecraft in a given time period. For example, the spacecraft can be pointing Earth, pointing Nadir,
performing a ”slew” etc. (see Table 1 for complete list).
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Figure 4: VEX Orbit and some pointing types

This simple forecast model was obtained doing physical experiments while Venus Express was being
developed by ESA and the industry. It can be summarized in the following table:

Pointing Type Power (W)
EARTH 146.2

SLEW 188.7
MAINT_OCM
MAINT_WOL 157.2
default
INERTIAL
NADIR
NADRI_POW
MOSAIC 156.8
CUSTOM
ALONG_TRACK
ACROSS_TRACK

Table 1. Power Estimation for each Pointing type

However, once the spacecraft is flying and sending telemetry, the over-simplification of the a-priori model
becomes evident, as Figure 5 illustrates.
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Figure 5: Real data (black) and current model prediction (red)

In fact, any predictive model based on pointing types only would be prone to fail, given that there is a
big dispersion of heater power consumptions for each pointing type. The histogram of Figure 6 shows the
wide range of heater power consumptions for the ”pointing EARTH” situation, based on real telemetry data.
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Figure 6: Histogram of heaters power consumption during pointing EARTH time blocks

Clearly, the prediction of 146.2W is not good enough, because when pointing Earth, the thermal sub-
system might as well be using less than 7T0W or more than 200W and there is no way to distinguish those
situations just based on pointing types.

It becomes now clear the need for a-posteriori, or data-driven models, that try to better match reality.
We describe our approach to pursue this goal in the next sections.

II. A Data Mining Approach

Data Mining has been described as ”the nontrivial extraction of implicit, previously unknown, and
potentially useful information from data”3 and ”the science of extracting useful information from large data
sets or databases”.* It has close links with machine learning, statistics, databases and information theory.
A traditional Data Mining process may involve all or some of the following steps: data collecting, data
cleaning, data preparation, data integration, feature selection, feature engineering, model selection, model
training and model evaluation. It may even require more than one iteration of some of the steps, since it
is an exploratory process, susceptible to fail if not properly done. In the following sections we describe the
relevant decisions we made in some of the most critical data mining steps.
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II.A. Feature selection

In our approach, the selection of the relevant features to use as model inputs was done manually, based on
human expertise. The reason lies in the fact that the physical meaning of the data involved is known.

We start by noting that the major external heat source influencing VEX thermal behavior is Sun radiation,
followed by the Albedo effect from Venus. To capture this in the model we use orbital and attitude data
of the spacecraft, such as distances and angles of these celestial bodies with respect to the 3 spacecraft
orthogonal axes. Additionally we use the predictions of eclipses, since in that situation Venus Express does
not get direct radiation from Sun.

Second, we also want to capture the effect of some internal heat sources. To achieve so, we include the
predictions of power consumption for five payloads (Aspera, Virtis, Spicav, VMC, MAG) and one radio
transmitter. PFS and VERA payloads were simply discarded because their profile of utilization is completely
stable (during the period of study they were either always ON or OFF). Note that we don’t include battery
usage and other eventual internal heat sources, since there are no predictions available. Finally we include
the previously mentioned higher-level nominal attribute: the pointing type, which can describe the overall
operational status of the spacecraft. At this point we have 16 raw input attributes for which we have
predictions available in the Venus Express Mission Planning System (MPS), enumerated in table 2.

Parameter Sampling
Distance to Sun 6 min
Angle VEX X-axis with Sun 6 min
Angle VEX Y-axis with Sun 6 min
Angle VEX Z-axis with Sun 6 min
Eclipse Flag 2 min
Distance to Venus 6 min
Angle X-axis Venus 6 min
Angle Y-axis Venus 6 min
Angle Z-axis Venus 6 min
Aspera Power Consumption 16 sec
Virtis Power Consumption 16 sec
Spicav Power Consumption 16 sec
VMC Power Consumption 16 sec
MAG Power Consumption 16 sec
Transmitter Power Consumption | 16 sec
Pointing Type not fix

Table 2. 16 raw input attributes for the machine learning model

II.B. Feature engineering

Although our training data is a set of time series, when we build a machine learning model, such as a decision
tree, the instances are considered as independent events as their order is not taken into account. This is
particularly bad for this problem, since we know that changes in temperatures are cumulative and depend
on the recent history of heat sources. In other words, even if we knew exactly, at a given time instant, the
behavior of all internal and external heat sources, this would not be enough to make a prediction about the
heaters power consumption. We need also to have information about the heat that was accumulated in the
recent past due to the same heat sources.

To capture this cumulative effect of heat we decided to introduce some basic knowledge from thermody-
namics.

Newton’s law of cooling, states that the rate of heat loss of a body is proportional to the difference in

temperatures between the body and the environment:!!
dT'(t
% = _T(T - Ten'u)
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Solving the differential equation, by standard methods of integration and substitution of boundary conditions,
we have:

T(t) = Tenv + (T(O) — Ten'u)eirt

The temperature follows an exponential decay process. Note however that we are not interested on a rigorous
analytical study of the thermal behavior of every spacecraft thermostat. In fact, heat transfer in space, occurs
fundamentally due to radiation and conduction, since convection may be absent.”> Our goal here is just to
introduce a pre-processing step that can help the machine learning model to capture the system behavior
more easily. The basic idea is: instead of just using the electrical currents and radiation intensities, what
if we pre-process those time series to simulate heat accumulation? This could be applied to payload and
transmitter currents and also to sun radiation time series.

The computational procedure to transform the raw time series is actually quite simple. Basically we use
a sliding-window operator in which the power consumption of an instrument at time ¢y will be accumulated,
with exponentially decayed weight, until g + m (time from which we assume we can already discard the
influence of the electric current in the local temperature). The parameters r and m were estimated based on
telemetry data of Virtis payload and a thermistor in close vicinity. As an approximation we used the same
”cooling” parameters for every time series.
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Figure 7: Exponential decay operator (time series following function e=")

With sun radiation, we additionally take into account the fact that radiation intensity decreases with the
square of the distance VEX-Sun and it’s completely absent during eclipses.

Input: Original signal S; Exponential decay operator I'y
Output: Exponential decayed time series T'

foreach time instant t in S do
foreach time instant d in I'y, do
| T[t+d] = T[t + d] + S[t] * Ti[t + d]
end
end
return T’

Algorithm 1: Pseudo-code of algorithm to pre-process time series and simulate heat accumulation and
exponential decay.

When we apply this preprocessing step I' to a signal, we see that its shape changes considerably. More
important, the time lag due to thermal inertia is captured. Note in figure 8 that the original signal (rep-
resenting a payload power consumption) the time instant ¢s is exactly the same as time instant ¢, since
the power consumption level is the same. But in fact, the thermal energy accumulated due to the electrical
current is dramatically different, since at t5 we are in a peak and at t15 we are at the lowest level.
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Figure 8: Example of application of the exponential decay operator to a simple time series.
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Intuitively, thermostats respond to instantaneous temperature, not to instantaneous heat being produced.
If we were not doing any pre-processing, mathematically we would have an input-output mapping that was
not a function, since there could distinct output values for the same combination of inputs. This would
mean that the statistical learning algorithms would discard important information, not only noise. The
preprocessed input attributes are now listed in table 3.

Parameter Type

Distance to Sun

Angle VEX X-axis with Sun
Angle VEX Y-axis with Sun
Angle VEX Z-axis with Sun
I'( Sun radiation )

Distance to Venus

Angle X-axis Venus

Angle Y-axis Venus numeric
Angle Z-axis Venus
I'(Aspera Power)
I'(Virtis Power)
I'(Spicav Power)
I'(VMC Power)
I'(MAG Power)
I'(Transmitter Power)

Pointing Type nominal

Table 3. 16 pre-processed input attributes for the machine learning model. I'() means exponential-decayed signals

II.C. Model Selection

The time series we want to predict is the sum of all LCL heater lines power consumptions. At this point we
can follow two approaches: create a model to predict directly the total power consumption (see Figure 9),
or create several models for each heater line and then combine the predictions to have the total (see Figure
10) .

0L (™

hll MODEL OF
. + _ > | TIME SERIES

Figure 9: Possible approach: Sum all time series of heater lines power consumption and then create a model.

After trying the first approach we realized that we had at least one good reason to get better results by
following the second alternative (bottom-up approach): in most LCLs the set of possible currents intensities
is very small (telemetry indicates that the simpler ones have only 2 levels and the most complex around 50).
In opposition, the time series for total power consumption can have thousands of possible levels (due to the
combinatorial explosion generated by the sum) which makes it, in practice, a continuous variable.

This means that we could in principle split the big problem in smaller ones which are easier to solve.
The question then is how to choose the appropriate model for each heater line and how to combine them.
We deal with these questions in the next section.

7 of 11

American Institute of Aeronautics and Astronautics



I ™ MODEL OF
. - TIME SERIES
h MODEL OF
: - TIME SERIES + MODEL OF
— TIME SERIES
» MODEL OF
— TIME SERIES

Figure 10: Possible approach: Create a model for each heater line and then combine them to predict total
power consumption.

II.D. Machine Learning algorithms

Recall that each heater is controlled by a thermostat that sets an upper and lower temperature threshold.
Additionally, we have seen that the set of possible states of the heater lines is finite and even small. This
highly suggests that a decision tree can be a good learner to model the behavior of this system.

II.D.1. Decision Tree data structure

A decision tree is a predictive model which maps observations about an item to conclusions about the item’s
target value. Its interpretation is the following:

e cach interior node corresponds to a variable;
e an arc to a child represents a possible value of that variable

e a leaf represents a possible value of target variable given the values of the variables represented by the
path from the root.

In particular, we are using trees that support both nominal and real-valued attributes. There are several
well studied algorithms to automatically learn decision trees from data, such as ID3 and C4.5.%9 Typically,
the only information kept in the leaves after running the learning algorithm is its class or numerical value
prediction. Here we have decided to follow a different approach. In order not to loose much information
about the time series behavior, we introduced a change in the data structure and algorithm for decision
trees: we keep histograms of the training data in the leaves of the tree. In this project we used the well
known WEKA!? data mining Java library.

Figure 11: Decision Tree with data histograms of class attribute in the leaves.

These histograms should approximate the probability distribution function of the variable we want to
predict.
Ideally, the histograms in the leaves would be Dirac-impulses, which would mean that we could predict a
single value with high confidence. However, for complex and noisy domains, the histograms will likely spread
over a wide range of possible values, which means we have to accept the uncertainty in our prediction.
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II.D.2. Avoiding overfitting

QOverfitting is the problem of using a statistical model with too many parameters with respect to the com-
plexity of the data. For example, if we are modeling a linear process with some additive noise, we should
only estimate two parameters: slope and y-intercept. If instead we use a n-degree polynomial, say with
n=10, we will get a smaller error in the training dataset but a much bigger error in the testing dataset. This
happens because the model ”overfitted” to the noise in the data. In this sense, we can say that the model
has learned the training data by heart and therefore generalized very poorly on new data.

When dealing with algorithms to generate decision trees, there are two basic approaches to avoid overfitting:®

e carly-stopping - in which we stop growing the tree before it reaches the point where it perfectly classifies
the training data,

e pruning - in which we allow the tree to overfit the data, and later we prune the tree.

In our case, we decided for a simple case of the first approach: limit the size of each decision tree (to
height=3). This basically prevents the existence of leaves with very small number of data points falling on
it, making the predictions more reliable.

II.D.3.  Combining the sub-models

So far we have built a simple decision tree for each of the heater lines and the question now is how to combine
them to have a prediction for the total power consumption. The trivial way would be to just sum up the
prediction for the mean value of the power consumption for each heater. However, given that we are storing
the data histograms we can perform a convolution operation to get the approximate probability distribution
function for the sum of two random variables.? Recall that the convolution operation between two time
discrete signals f and g is defined as follows:”

(fxg)(m) =2, f(n)g(m —n)

Combining histograms by the convolution operation will make the resulting histogram wider, unless at
least one of the histograms has width zero (Dirac impulse). For example, if the prediction for LCLH; was
a uniform distribution in (10,12) Watt and LCLHy (7, 9) Watt, then the distribution for their sum would
range from 17W to 21W. Note however that this distribution would no longer be uniform, since the value
19W is more likely to happen than 17W or 21W.

I1I.D.4. Making predictions

The fact that we keep data histograms in the leaves of the decision trees, allows us to predict not only the
average value of the time series, but also upper or lower boundaries at each time instant.

We can for example extract the 95% percentile value in order to, most-likely, have an over-estimation of
the heater power consumption at a given point in time.
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Figure 12: Histograms in the leaves allow the computation of upper boundaries.

2Note that by doing this we are assuming independence between the different models, which is not strictly true, but it turns
out to be a fair approximation.
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The motivation to exploit this capability of the model comes from the fact that it may be useful for
operational purposes. In particular, the engineers using the Mission Planning System, may want to predict,
with some level of confidence, the worst-case scenario for power consumption instead of the most-likely
scenario. Note that the common practice to compute such a worst-case estimation is simply to add or
multiply by a security factor. However, our approach is more informed because the added security margin
is not constant, it depends on the histogram shape of each prediction.

Having said that, we now return to the scenario in which we compute the average values of the histograms,
since they will give us the estimations that better minimize the prediction error. In the next section we discuss
the quantitative evaluation of the model and its results.

II.LE. Model Evaluation

To test our approach we split the dataset into two non-overlapping sections. The training dataset, used to
create the models, covers the period from the 11th of April 2006 until the 31th of October 2006, while the
testing dataset, used to evaluate the model, goes from the 1st of November 2006 until the 18th of December
2006.

The quantitative results of our model, measuring the average relative error of the prediction, are described
in the table 4.

Training Dataset Testing Dataset
16.81% 19.76%

Table 4. Mean relative error of prediction model

Note that the performance in the testing dataset gives us an indication on how good the model is making
predictions for new data. To have a visual idea of the quality of the predictions we plot the real data together
with the response of our model in figure 13.
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Figure 13: Plot of real data (black) and model prediction (red) in the last 6 days of the testing dataset.

Note that the high frequency changes of the signal are not learned, which is normal due to the complexity

of the system we are modeling. Besides, for operational uses, it’s enough for the VEX Flight Control Team
to have a fair approximation of the average (or upper/lower bounds) and ignore the minute-level changes in
the heater power consumption.
To have a rough idea about the weight of this high-frequency fluctuations, we did the simple exercise of
smoothing the time series with a moving-average filter and then computed the average relative error with
respect to the original signal. The values in table 5 indicate that although the results of our model are
naturally worse than the real average of the data, the quality of our predictions is not far from what could
be expected.
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Training Dataset Testing Dataset
13.31% 14.43%

Table 5. Mean Relative Error of Smoothed Data

ITI. Conclusions

This study started by proving the inadequacy of the simplistic a-priori model in use, and therefore the
need for a more accurate alternative, based on time series sent by the spacecraft.

Often Operations teams deal with systems that are hard to model, but they are sitting on a load of
flight telemetry data, which portrays the behaviour of the system under the most varied and real conditions,
rather than those derived from engineering models or from ground tests. However, real life conditions are not
always easy to isolate or correlate. Indeed, forecasting Venus Express thermal power consumption turned
out to be a difficult task, due to the complex, dynamic, recurrent and partially non-observable domain.

Our Data Mining and Machine Learning approach proved to be a good way of dealing with this complexity
and allowed us to get better approximations for the expected power consumption. Moreover, our model can
help predicting worst-case scenarios, which can be of great use for operations. It has also been demonstrated
that, when available, the introduction of some engineering expertise (like the one related to the thermal
inertia behaviour) improves dramatically the quality of the empirical model.

The benefit of using this methodology to predict thermal behaviour is related to increasing flexibility in
operations planning, since the current thermal constraints are defined in terms of a limited set of allowed
envelopes representing standard science observation profiles (see'?).

In a broader perspective, we showed that is possible to use new software technologies in the typically
conservative space-domain, given that they can contribute to safety in operations and increase science return.

IV. Future Work

The next natural step in this project is the integration of the model within the Venus Express Mission
Planning System. Another related task of interest would be the prediction of temperatures at specific points
of the spacecraft. To achieve this, all the work done at the level of feature engineering could be re-used,
although different modeling techniques may be required.

One can also envisage in the future that such methodologies are made available as standard library
packages that can be plugged to a mission control (for data retrieval) and planning system (for resource
usage estimation), allowing the Operations team to set up a model by configuring expected inputs/outputs,
resolution algorithms, and additional engineering knowledge.
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