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Abstract

We propose a method that exploits pose information in order to improve object
classification. A lot of research has focused in other strategies, such as engineer-
ing feature extractors, trying different classifiers and even using transfer learning.
Here, we use neural network architectures in a multi-task setup, whose outputs
predict both the class and the camera azimuth. We investigate both Multi-layer
Perceptrons and Convolutional Neural Network architectures, and achieve state-
of-the-art results in the challenging NORB dataset.

1 Introduction

Object classification is the problem of assigning the correct label to an image of an
object. In opposition to the problem of object recognition, which deals with single
instances, object classification deals with classes, or categories, of objects. That is,
the same label will be assigned to a set of different objects that are considered to be
semantically related. For example, we might be interested in classifying an image as a
car or bike, independently of the specific instance of car or bike we are given. In this
scenario, our algorithms should be immune to the intra-class variability, but exploit the
inter-class variability to precisely define decision boundaries.

This has been a fundamental problem since the beginning of computer vision, and
great progress has been achieved since then.

Many directions of research have been explored, and one can argue that the major
milestones in the last decades were achieved using a combination of:

1. generic machine learning algorithms: this includes Support Vector Machines,
Boosting, and different kinds of Neural Networks. [1, 8, 12]

2. hand-designed feature extractors, such as: SIFT, HoG, or Haar filters, to name
just a few. [14, 23, 22]



3. greater quantities of data and computational power.

Despite of the great progress, computer vision algorithms are far from having the
same performance as humans in the problem of object classification.

In our work, we are interested in investigating the effects of having pose informa-
tion available. For that reason, we decided to work with the small-NORB dataset [13],
which is a collection of 24300 images, designed to test object classification algorithms.
It was created by taking pictures of 50 different objects, belonging to 5 categories. The
images cover a wide range of variations across pose (azimuth, elevation) and lighting
conditions. Collections like Caltech-256 [9], ImageNet [6] or LabelMe [19] have more
realistic pictures, but this comes with advantages and disadvantages. Such datasets are
good to test if an algorithm can classify typical web pictures into common categories
such as: cars, bicycles, faces, chairs, etc. However, using this kind of data, algorithms
can exploit texture, color and background scene statistics. This is perfectly fine for
many useful applications, but in this research work we are interested in testing the lim-
its of methods that have to rely mostly on shape. As the pose of an object changes,
the 2D shape in the image space will also change. The NORB dataset is composed of
small gray-scale images of texture-less objects and it is therefore ideal four our studies.
Note that even though it is a very challenging dataset, a human would be capable of
solving the NORB object classification problem with virtually no mistakes. '

1.1 Related work
1.1.1 Multi-task learning

In [3], the authors define multi-task learning as “an approach to inductive transfer
learning that improves learning for one task by using the information contained in the
training signals of other related tasks”. Indeed, the final goal of a learning algorithm
is to minimize the expected risk in testing conditions. However, the learning happens
by looking at training data only. Within the hypothesis set there are normally many hy-
pothesis that have zero training error, but a choice among those must be made. There-
fore, there is a need for an inductive bias. There are many alternatives: one can chose to
prefer simpler models (Occam’s razor); encode domain prior-knowledge by restricting
the hypothesis set or designing features; assume i.i.d data and use cross-validation; or
transfer learning from a related task. Multi-task learning follows the latest approach.
In particular, the model predicts two or more properties about the same input data, and
each task will work as an inductive-bias for the other(s). In a work with similarities
with ours [5], authors use multi-task learning for a Natural Language problem: the
model is trained jointly to predict part-of-speech tags, chunks, and other related tasks.

1.1.2 Deep-learning

Artificial Neural Networks were some of the first models being developed by A.IL re-
searchers, with the Perceptron being studied by Rosenblatt in the late 50s [18]. How-

Perhaps with the exception of one or two vehicles, that according to subjective judgement could be
labeled either as “car” or "truck”.



ever, such a simple linear classifier revealed to be insufficient to solve the very com-
plex tasks in vision, speech, robotics, etc. The appearance of Multi-layer Perceptrons,
which include transfer layers with non-linearities, opened the doors to tackle more
ambitious problems. The trend of using more complex network architectures contin-
ued, and nowadays the “deep-learning” term is used for models with several layers of
non-linearities. This is opposed to more “shallow” models such as Perceptrons, MLPs
with one single hidden layer, SVMs or Boosted classifiers (of simple weak-learners).
Convolutional Neural Networks [ 1] and Restricted Boltzmann Machines [20] are ex-
amples of deep-architectures that have proven to work in real-world problems. They
might differ in terms of approach (discriminative versus generative models) and of
learning algorithms, but they have in common the fact that the cost functions to min-
imize are non-convex. For this reason, some form of gradient-descent algorithm is
normally used.

1.1.3 Pose-indexed features

In [7], the authors use pose-labeled data to improve object detection. However, the
pose is treated as a latent variable, and there is a search through the pose-space at test
time (which can be done in a coarse-to-fine manner). In our case the pose is predicted
directly from the input data and is treated in the same way as the class labels.

1.1.4 Pose-embeddings

In [10], authors use the pose annotations during learning by enforcing an embedding
to occur. Pictures of the same object at neighbor poses are forced to have a similar
representation. Time-coherence in videos has also been exploited to enforce a pose
embedding and improve object recognition [15]. In [17], the problem of face detection
and head-pose estimation are solved jointly, by enforcing an embedding to occur in a
9-dimensional space where a 3D “head-manifold” lives. If the embedding of an image
in this space is too far from the head-manifold” then is labeled as background. On the
other hand, if the image embedding lies on the manifold, the sample is considered to
represent a face, and the head pose can be estimated (even analytically).

1.1.5 On the NORB dataset

In the original paper [13], the best classification error obtained in the uniform-NORB
was 6.6%, using a Convolutional Neural Network architecture. Other methods per-
formed less well, in particular SVMs, k-NN and linear classifiers, with errors of 12.6%,
16.6% and 30.2%, respectively. Restricted Boltzmann machines [16] have also been
tested on NORB achieving an error of 5.20%. In [21], a hierarchical network using
edges information achieves a classification error of 2.87%. Another recent work [4],
reports an error rate of only 2.53%, however the method also relies on hand-crafted
features, such as contrast-extractors and edge detectors.

In our work, we intend to investigate another direction. Instead of adding hand-
designed feature extractors or engineering more complex network architectures, we
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Figure 1: The NORB dataset, with objects within a category aligned at azimuth zero.

want to see the effect of exploiting a richer data labeling. In particular we are inter-
ested in using the information about pose of the objects. NORB is well suited for this,
because the authors registered the camera azimuth and elevation at which each picture
was taken.

2 Learning
We are interested in learning two functions:
a classifier f : RZXHXW _ RC "and
a pose-estimator g : RZXH*W _, RCOX2 where:

H and W are height and with of each image (stereo), and C' is the number of
classes.

Note that the pose-estimator g, whose goal is to predict a single scalar (the azimuth
angle), is outputting in a 2 x C-dimensional space. The reason there is one output
vector per class, is that pose-alignments between object of different classes might be
meaningless. How to put an airplane, an animal and a human in the same reference
pose? The second choice, that is, making regression of a two-dimensional vector,
instead of just of a scalar value, is a due to two technical reasons: 1) whatever the
non-zero 2D vector, it always forms an angle with the x-axis (no problem of bounding
a scalar in a finite interval); and 2) it’s easier to encode the modulo property (0 degrees
is the same as 360 degrees °).

2in fact we predict the azimuth modulo 180, because there is a big symmetry in the data that could lead



For a sample = of class y and ground truth azimuth 6, we can denote the 2-
dimensional output vector corresponding to the class y by f,(x) and g, (z).

2.1 Pose Loss functions

There is more than one loss function that could be used to make the pose prediction.
The first one, using the cosine, does not take into account the norm of the current
output. The second one, using L; or Ls norms is more strict and forces the model to
approximate a vector of norm 1. Although the first one is semantically more adequate,
the second one reveals to be more robust to numerical problems.

2.1.1 Cosine loss

gy() - r(6)

lregress(g(x)7 y,@) =1- m

where 7(0) = (cos(0), sin(6))

That is, we want the angle between the 2D output of the network for the correct
class to be aligned with the ground truth azimuth (which can be done by looking at the
cosine of the angle between the two).

2.1.2 L, regression loss

Another alternative is to directly minimize, for example, the L; norm of the difference
between the output and the ground truth:

lregress(9(),y,0) = [|[r(0) — gy () |1

In the experiments section we report only the results obtained with the L; norm.

2.2 Classification Loss function

Discriminative learning in a multi-class setting can be done using a standard criterion,
such as the Negative Log-Likelihood:

Letass(F (), ) = — log( —22Uu(®)

Zj:l exp(f;(x))

Note that when f,(x) is much greater than all of f;(z), the penalty will tend to
—log(1) = 0. On the other hand, when at least one f;(z) is much greater than f,(z)
the penalty tends to —log(0) = +oc.

)

to contradicting supervision and over-fitting.



2.3 Combined loss

The final loss, as seen from the model’s parameters shared among tasks, can be seen as
a weighted sum of the two task-specific losses:

l = lclass + Alregress

3 Architectures
To implement the multi-task learning with neural networks, we do something very

standard: the weights of the first layers are shared, whereas the last linear layer is
task-specific. See Figure 2 for a visual diagram.
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Figure 2: Network diagram and output interpretation.

3.1 Multi-layer perceptron

This is a simple and standard architecture, and the only hyper-parameter to specify is
the number of hidden-units.



3.2 Convolutional Neural Network

This is deep-network architecture, whose layers are:
1. Spatial Convolution: 20 kernels of size 2x5x5 (stereo images), unitary shifts
2. Spatial Sub-sampling: 2x2 kernel, non-overlapping; followed by non-linearity
3. Spatial Convolution: 20 20x5x5 kernels, unitary shifts
4. Spatial Sub-sampling: 2x2 kernel, non-overlapping; followed by non-linearity
5. Spatial Convolution: 20 20x6x6 kernels, unitary shifts
6. Spatial Sub-sampling: 2x2 kernel, non-overlapping; followed by non-linearity

7. Fully-connected linear layer

One attractive property of these architectures is that the output can be visualized
and naturally interpreted. We can render and image with a two-dimensional vector per
class. The angle that the vector corresponding to the true label forms with the x-axis
should be an approximation of the true camera azimuth at which the picture was taken.
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Figure 3: Illustration of network outputs for a NORB sample.

4 Training

The training of the neural networks is done using standard methods [12], however it is
worthwhile to mention some technical details:

1. Data normalization: we compute the mean and standard deviation of the all
training images, and transform the data to have zero mean and standard deviation
of 1. In the case of MLP architectures, the normalization is done per pixel,
whereas in the Convolutional Network the mean and variance are only scalars.

2. Network weights initialization: weights are initialized from a uniform distribu-
. . . 1 . .
tion with zero mean and standard deviation 0 = ——, where m is the fan-in (the

m
number of connections feeding into the node).

3. Learning rate correction: the learning rate used to take a gradient descent step
in back-propagation, is divided by the number of neurons in that layer.



Classifier Input Test error
Linear [13] raw 2x96x96 30.2 %
1-NN [13] PCA 95 16.6 %
SVM Gauss[13] PCA 95 13.3%
MLP (NLL loss) + pose raw 2x96x96 | ~ 12.0 %
Conv Net 80 [13] raw 2x96x96 6.6%
Conv Net (NLL loss) + pose | raw 2x96x96 | ~ 5.4 %

Table 1: Comparison with the results of different classifiers in the small-NORB
dataset, as reported in [13].

To train the network, we use the standard back-propagation algorithm with stochas-
tic gradient descent[2]. The learning rate is chosen as a compromise between training
time and smoothness of the training error.

S Experiments

Training neural networks is a stochastic process. Depending on the seed of the pseudo-
random number generator, we can get models with different performances, because:

1. we are optimizing a non-convex functions: the starting point matters.

2. we use stochastic gradient descent, which approximates the true gradient with
only one sample

3. network weights are initialized randomly (zero mean Gaussian)
4. dataset is shuffled

In order to properly compare models we do the following: data shuffling and
weights initialization is exactly the same for the baseline and multi-task version; we
run the experiments with different seeds and compute mean and standard deviation of
test errors. Unfortunately, due to computing power limitations, we could not do this
careful analysis using the full training dataset and the heaviest models. Instead, we
did it on a scaled-down version of the experiment, in which we use an MLP with 100
hidden units training on 10% of the dataset, for 5 different seeds. Both for baseline
and multi-task version. Has we can observe from the error bars plot, the multi-task
version is clearer better and the error bars (of plus or minus one standard deviation)
barely overlap at any training stage.

In table 5, we report full scale results of our models and other references reported
in the original NORB paper.

6 Visualizations

To better understand what is going on inside the neural network, we looked at its output
before the last linear layer, using all the images of a single object category. We then
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Figure 4: Comparison of two equal MLP architectures, with and without pose compo-
nent of the loss.

computed the first two principal components and projected the data into it. We rendered
each point as a line segment, whose orientation is given by the ground truth azimuth.
You can notice in the images that the network exploiting the pose-information was
forced to learn and embedding that is much more smooth as the pose varies.

7 Conclusion and future work

In this work we investigated how we could use pose-information as a regularizer to
improve generalization of our models. We achieved promising results, specially in the
more shallow models. In the future, we plan to explore other forms of transfer learning.
For example, one could enrich the collection with synthetic data for which the ground
truth pose is known. That would mean one could apply our method even to datasets in
which there are no pose labels available.
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